Shintani zeta-functions and Gross–Stark units for totally real fields

نویسنده

  • Samit Dasgupta
چکیده

Let F be a totally real number field and let p be a finite prime of F , such that p splits completely in the finite abelian extension H of F . Stark has proposed a conjecture stating the existence of a p-unit in H with absolute values at the places above p specified in terms of the values at zero of the partial zeta-functions associated to H/F . Gross proposed a refinement of Stark’s conjecture which gives a conjectural formula for the image of Stark’s unit in F× p /Ê, where Fp denotes the completion of F at p and Ê denotes the topological closure of the group of totally positive units E of F . We propose a further refinement of Gross’ conjecture by proposing a conjectural formula for the exact value of Stark’s unit in F× p .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Shintani-type Formula for Gross–stark Units over Function Fields

Let F be a totally real number field of degree n, and let H be a finite abelian extension of F . Let p denote a prime ideal of F that splits completely in H. Following Brumer and Stark, Tate conjectured the existence of a p-unit u in H whose p-adic absolute values are related in a precise way to the partial zeta-functions of the extension H/F . Gross later refined this conjecture by proposing a...

متن کامل

Computing Stark units for totally real cubic fields

A method for computing provably accurate values of partial zeta functions is used to numerically confirm the rank one abelian Stark Conjecture for some totally real cubic fields of discriminant less than 50000. The results of these computations are used to provide explicit Hilbert class fields and some ray class fields for the cubic extensions.

متن کامل

Gross–stark Units, Stark–heegner Points, and Class Fields of Real Quadratic Fields

Gross–Stark units, Stark–Heegner points, and class fields of real quadratic fields by Samit Dasgupta Doctor of Philosophy in Mathematics University of California, Berkeley Professor Kenneth Ribet, Chair We present two generalizations of Darmon’s construction of Stark–Heegner points on elliptic curves defined overQ. First, we provide a lifting of Stark–Heegner points from elliptic curves to cert...

متن کامل

Stark's Conjectures and Hilbert's Twelfth Problem

We give a constructive proof of a theorem given in [Tate 84] which states that (under Stark’s Conjecture) the field generated over a totally real field K by the Stark units contains the maximal real Abelian extension of K. As a direct application of this proof, we show how one can compute explicitly real Abelian extensions of K. We give two examples. In a series of important papers [Stark 71, S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007